+7 (499) 519-32-50 МРТ томография   О компании   Найдите нас   
Поиск

МРТ
Записаться на МРТ
Стоимость МРТ

МРТ в Москве
ВИП МРТ
Полное МРТ сканирование тела
Где сделать МРТ комфортно

МРТ - информация для пациентов
О методе МРТ
Показания к МРТ
Направление на МРТ
Задайте вопрос

Консультации иностранных врачей
Консультации МРТ в Израиле
Врачи МРТ
Консультанты по МРТ и КТ
Стоимость консультаций

МРТ и томография главная /  Физика МРТ /  МРТ: Физика



Физика МРТ




2 3 4 5 6 7 8 9 10 11 12 . . . . . .24 

На правах рукописи Пигульский Сергей Викторович

МЕТОД И АППАРАТУРА ДЛЯ КРУПНОМАСШТАБНОГО ПРОЦЕССА ЛАЗЕРНОГО РАЗДЕЛЕНИЯ ИЗОТОПОВ УГЛЕРОДА

Специальность - 01.04.01 - приборы и методы экспериментальной физики

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора технических наук

г. Троицк - 2008 г.

Работа выполнена в Государственном Научном Центре РФ «Троицкий институт инновационных и термоядерных исследований»

Официальные оппоненты:

доктор технических наук А.А. Балашов

доктор физико-математических наук, профессор Б.И. Васильев

доктор химических наук, профессор М.Б. Розенкевич

Ведущее предприятие:

Российский научный центр «Курчатовский институт»

Защита диссертации состоится 25   марта   2009 г. в  15 часов 00 мин.

на заседании диссертационного совета Д 002.135.01 в НТЦ уникального приборостроения РАН

по адресу: 117342, Москва, ул. Бутлерова, д. 15.

С диссертацией можно ознакомиться в библиотеке НТЦ УП РАН

Автореферат разослан_2009 г.

Ученый секретарь диссертационного совета,

кандидат физико-математических наук Е.А. Отливанчик

1

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Углерод является одним из немногих элементов, изотопы которого производятся в крупных для изотопного производства килограммовых количествах. Сферы их применения определяются тем большим значением, которое этот элемент имеет в органическом мире. Углерод входит в состав огромного количества соединений, которые играют важную роль в жизнедеятельности растительных и животных организмов.

К настоящему времени наибольшее применение соединения, меченные изотопом 13С нашли в медицине и биологии для изучения процессов, происходящих в живых организмах, диагностики функциональных нарушений, контроля правильности лечения и более эффективного применения лекарств.

13

К перспективным проектам использования С относятся исследования, связанные с охраной окружающей среды, глобальными изменениями климата, а также создание технологий экологического мониторинга.

13

Для промышленного производства изотопа С до последнего времени использовался, главным образом, метод низкотемпературной ректификации СО. Общие свойства ректификационных установок, присущие также всем классическим разделительным технологиям, это [1]:

-низкая разделительная способность отдельного элемента разделительного каскада а (а-1<<1) и, как следствие большое их количество, громоздкость оборудования и значительные капитальные затраты при расширении объемов производства;

-длительный пусковой период, т.е. время от загрузки сырья до выхода на стационарный режим выдачи продукции - как правило, месяцы;

-большие энергетические затраты из-за низкого термодинамического КПД процесса разделения. При этом энергетические затраты определяются количеством исходного сырья, а не количеством выделяемого изотопа.

Растущие потребности в углероде-13 можно обеспечить путем создания новых эффективных и высокопроизводительных технологий разделения. Одной из таких технологий является технология лазерного разделения изотопов (ЛРИ).

Недостатки классических методов разделения проистекают главным образом из малых различий в физико-химических свойствах разных изотопов одного элемента и, соответственно, малых коэффициентах разделения а. С другой стороны, различия в оптических свойствах изотопов, в особенности в спектрах переходов, по оптическим стандартам чрезвычайно велики. Поэтому еще в середине 1930-х годов с использованием

2

света связывались определенные надежды на существенное повышение эффективности процесса разделения изотопов.

Появление лазерных источников инфракрасного (ИК) диапазона открыло возможность резонансного воздействия на молекулярные колебания, частоты которых для огромного числа молекул находятся как раз в этой области спектра. Были разработаны эффективные методы сильной "раскачки" молекулярных колебаний до амплитуд, вызывающих диссоциацию возбужденных молекул. При этом, используя нужную длину волны лазерного излучения, можно селективно (избирательно) возбуждать молекулу требуемой изотопной модификации в смеси.

С момента обнаружения в Институте спектроскопии РАН эффекта изотопически селективной многофотонной диссоциации (МФД) молекул 10BCl3 и 11BCl3 при облучении газа мощным ИК лазерным излучением [2] прошло более 30 лет. Большое количество экспериментальных и теоретических работ, выполненных в последующие годы (см., например, [1, 3]), сделали очевидными следующие преимущества лазерного метода разделения по сравнению с традиционными [3, 4]:

-высокий коэффициент разделения а>>1. Это позволяет на порядки снизить число ступеней разделения, доведя их в ряде случаев до одной и уменьшить капитальные затраты на создание установок;

-низкие энергетические затраты, поскольку расходуемая энергия пропорциональна количеству целевого изотопа, а не количеству исходного сырья;

-малый срок пускового периода (выхода на стационарный режим), как правило, минуты.

Целью работы явилось создание крупномасштабного производства изотопа 13С на основе явления изотопически-селективной многофотонной диссоциации молекул излучением СО2-лазера.

Проведенный комплекс работ включал в себя решение следующих задач:

  • разработка, создание и исследование мощных импульсно-периодических СО2-лазеров;
  • исследование процессов селективной многофотонной диссоциации углеродсодержащих молекул и выбор исходного рабочего вещества для крупномасштабного процесса;
  • изучение проблем масштабирования процесса разделения;

3

  • разработка метода, оригинальной аппаратуры и устройств для реализации крупномасштабного процесса лазерного разделения изотопов углерода, в том числе разделительного реактора нового типа;
  • исследование методов лазерного обогащения изотопа углерод-13 до высоких концентраций (~99%).

Научная новизна работы. Автор видит научную новизну полученных результатов в следующем:

  • Проведено комплексное исследование физических процессов, сопровождающих импульсно-периодический (ИП) электрический разряд в потоке газа. Определены причины ограничения средней мощности излучения импульсно-периодических СО2-лазеров. Предложены конструктивные решения, позволившие осуществить многодневный безостановочный режим работы ИП СО2-лазеров.
  • Обнаружено и изучено влияние на параметры элементарного акта разделения вторичных химических реакций, протекающих при воздействии на молекулы CF2HCl лазерного излучения с большой средней мощностью. Предложены методы сохранения этих параметров.
  • Выполнена аппаратурная проработка крупномасштабного лазерного производства углекислого газа, обогащенного по изотопу 13С с параллельно-последовательным принципом построения технологической цепочки. Предложены технические и технологические решения, позволившие реализовать процесс производства в непрерывном режиме.
  • Изучены параметры процесса разделения в условиях стационарного режима облучения рабочего газа в фотохимическом реакторе.
  • Предложен и реализован принцип реактора идеального вытеснения применительно к проблеме селективной лазерной фотохимии. Изучены параметры процесса разделения в режиме идеального вытеснения.
  • Исследован двухступенчатый процесс лазерного разделения изотопов углерода при внутрирезонаторном облучении системы CF2HCl+HI излучением с большой средней мощностью.
  • Исследован двухступенчатый процесс лазерного разделения изотопов углерода при облучении на второй ступени обогащения фреона-22, синтезированного из тетрафторэтилена, полученного на первой ступени.

4

Практическое значение работы.

Разработанный метод построения крупномасштабного процесса лазерного разделения изотопов углерода, найденные технические и технологические решения привели к созданию не имеющего мировых аналогов высокоэффективного промышленного предприятия с

13

мощностью производства около 30 кг изотопа   С в год

2 3 4 5 6 7 8 9 10 11 12 . . .. . .24 


Все услуги - Московский Врач

Виды МРТ

Виды томографии

МРТ архив

Конгрессы по томографии

 
 
Реклама: