+7 (499) 519-32-50 МРТ томография   О компании   Найдите нас   
Поиск

МРТ
Записаться на МРТ
Стоимость МРТ

МРТ в Москве
ВИП МРТ
Полное МРТ сканирование тела
Где сделать МРТ комфортно

МРТ - информация для пациентов
О методе МРТ
Показания к МРТ
Направление на МРТ
Задайте вопрос

Консультации иностранных врачей
Консультации МРТ в Израиле
Врачи МРТ
Консультанты по МРТ и КТ
Стоимость консультаций

МРТ и томография главная /  Физика МРТ /  МРТ: Физика



Физика МРТ




1 2 3 4 5 6 7 8 9 10 11 12 . . . . . .24 

Таким образом, представленная работа содержит научно обоснованные технические и технологические решения, внедрение которых вносит значительный вклад в развитие науки и техники.

Положения, выносимые на защиту:

1. Ограничение средней мощности излучения импульсно-периодических СО2-лазеров связано с наличием к моменту очередного импульса тока градиентов плотности рабочего газа в приэлектродных пограничных слоях.

Градиенты плотности газа, создаваемые в разрядном промежутке стоячими волнами, становятся существенными в случае, когда частота повторения разрядных импульсов близка к собственной частоте акустического резонатора, образованного газовым трактом лазера.

2. Среди исследованных соединений оптимальным исходным веществом для организации крупномасштабного процесса лазерного разделения изотопов углерода излучением СО2-лазера по совокупности параметров является фреон-22. Накопление в фотохимическом реакторе продуктов диссоциации фреона-22 инициирует вторичные химические реакции, оказывающие отрицательное влияние на параметры процесса разделения.

3. Совокупность технических и методологических решений, положенных в основу рабочего проекта Комплекса «Углерод», позволила создать экономически эффективное лазерное производство мощностью не менее 30 кг изотопа углерод-13 в год.

4. Использование газодинамической системы разделения сред СО2-лазера и фотохимического реактора позволяет размещать реактор в области сильного лазерного поля и снимает ограничения на импульсную и среднюю мощность лазерного излучения, связанные с лучевой стойкостью оптических элементов.

5. Реализация режима идеального вытеснения облучаемого газа в фотохимическом реакторе позволяет повысить производительность процесса разделения на 50 процентов в сравнении со схемами с поперечной прокачкой.

5

6. Принципиально возможно получение изотопа углерод-13 с концентрацией 99% в две ступени лазерного обогащения при внутрирезонаторном облучении на второй ступени фреона-22, синтезированного из тетрафторэтилена, полученного на первой ступени.

7. При комбинированном методе высокого обогащения по совокупности параметров предпочтителен метод «лазер + химический изотопный обмен».

Апробация работы. По материалам диссертации опубликовано более 30 печатных работ. Основные результаты докладывались на Всероссийских и Международных конференциях и симпозиумах: IV-X школах-совещаниях по лазерному разделению изотопов, (п. Бакуриани, 1979-1988 гг.); V Всесоюзной конференции по физике низкотемпературной плазмы (г. Киев, 1979 г.); IV Международной школе по нелинейной оптике (ЧССР, 1983 г.); Международной конференции Lasers-96 (Portland, 1996 г.); I, II, IV-X Всероссийских (Международных) конференциях «Физико-химические процессы при селекции атомов и молекул» (г. Звенигород, 1996-2005 гг.); XII Международной конференции по мощным лазерам (г. С.-Петербург, 1998); VI Международной конференции «Лазерные технологии 98» (г. Шатура, 1998); Международной конференции по разделению в жидкостях и газах SPLG-2000 (г. Москва, 2000 г.); Международной конференции LAT-2002 (г. Москва, 2002 г.).

Структура и объем диссертации. Диссертация состоит из Введения, пяти глав и Заключения. Материал изложен на 353 страницах текста, включая 124 рисунка, 53 таблицы и список литературы из 288 наименований.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во Введении обосновывается актуальность работы, дается общая постановка задач исследования, приводятся защищаемые положения и краткое содержание диссертации.

Глава 1 «Анализ состояния и перспектив развития производства и применения стабильных изотопов углерода» носит обзорно-аналитический характер. Рассмотрены существующие и перспективные методы производства изотопа 13С, основные области его использования.

Известные методы разделения изотопов основаны на незначительных изменениях физических или химических свойств веществ, молекулы которых содержат различные изотопы образующих их элементов (см., например, [5-7]).

6

Большинство физических методов разделения непосредственно основано на различии масс изотопных молекул, атомов или ионов (электромагнитная сепарация, диффузия, термодиффузия, центрифугирование).

Электромагнитный метод принципиально обладает высокой энергоемкостью и низкой производительностью и применяется поэтому для получения изотопов, требующихся в небольших количествах и имеющих высокую стоимость.

Сообщений об организации производства изотопов углерода центробежным методом в литературе не обнаружено. Немногочисленные имеющиеся публикации [8, 9] относятся к стадии разработки основ технологии, когда должен быть решен ряд взаимосвязанных вопросов:

-выбор газовых центрифуг для разделения изотопов углерода;

-выбор рабочих веществ и разработка соответствующих химических переделов;

-разработка технологических схем для получения высокообогащенного изотопа, включая проектирование разделительных каскадов и решение вопросов утилизации отвалов разделительного производства.

Сложность заключается в том, что высокая экономическая эффективность процесса центробежного разделения может быть достигнута только при высокой разделительной способности газовых центрифуг. Разделительная способность сильно растет с ростом молярной массы рабочего вещества. Кроме того, разделительная способность на целевом элементе зависит не только от молярной массы, но и пропорциональна количеству атомов целевого элемента в молекуле рабочего вещества, следовательно, желательно, чтобы последняя содержала как можно больше атомов углерода. Вместе с тем, наличие нескольких атомов углерода в рабочей молекуле приводит к изотопным перекрытиям, ограничивающим максимально возможную степень обогащения.

В настоящее время для разделения изотопов элементов средних масс, в том числе и углерода, применяют, в основном, физико-химические методы разделения, основанные на различии тех свойств, которые зависят от нулевых энергий колебаний как атомов в молекулах, так и самих молекул в кристаллических решетках или жидких телах [7]. Различия в нулевых энергиях колебаний, обусловленные, в свою очередь, различием масс изотопных молекул, являются причиной термодинамических и кинетических изотопных эффектов.

Из методов разделения, основанных на кинетических изотопных эффектах, практическое применение в период создания первых промышленных разделительных установок нашел лишь электролиз, который, однако, в дальнейшем был вытеснен другими, более эффективными процессами. В настоящее время кинетические изотопные эффекты используются главным образом в исследовательских работах.

7

Основные преимущества методов разделения, в основу которых положены термодинамические изотопные эффекты, связаны с обратимостью однократного акта разделения. Во-первых, в отличие от методов разделения с необратимым элементарным процессом (диффузия, электролиз и др.), задача умножения однократного изотопного эффекта достаточно просто решается созданием противоточных разделительных колонн. Во-вторых, все энергетические затраты связаны не с осуществлением элементарного акта разделения, а лишь с процессами обращения фаз и создания продольных потоков в колонне, т.е

1 2 3 4 5 6 7 8 9 10 11 12 . . .. . .24 


Все услуги - Московский Врач

Виды МРТ

Виды томографии

МРТ архив

Конгрессы по томографии

 
 
Реклама: