+7 (499) 519-32-50 МРТ томография   О компании   Найдите нас   
Поиск

МРТ
Записаться на МРТ
Стоимость МРТ

МРТ в Москве
ВИП МРТ
Полное МРТ сканирование тела
Где сделать МРТ комфортно

МРТ - информация для пациентов
О методе МРТ
Показания к МРТ
Направление на МРТ
Задайте вопрос

Консультации иностранных врачей
Консультации МРТ в Израиле
Врачи МРТ
Консультанты по МРТ и КТ
Стоимость консультаций

МРТ и томография главная /  Физика МРТ /  МРТ: Физика



Физика МРТ




1 2 3 4 5 6 7 8 9 10 11 12 . . . . . .24 

подвод энергии требуется только на концах колонны. Эти преимущества обеспечивают относительную экономичность этих методов и позволяют создавать высокопроизводительные промышленные разделительные установки.

До последнего времени для разделения изотопов углерода в промышленности использовался, главным образом, метод низкотемпературной ректификации СО. Основными производителями изотопа 13С этим методом являются компании Cambridge Isotope Laboratories Inc. (CIL) и Isotec, Inc. (США) [10]. К началу 2000-х годов мощность производства каждой из компаний составляла величину ~ 30 кг/год изотопа 13С с обогащением 99%. В CIL подготовлен проект по увеличению производительности до 120 кг/год на первой стадии реализации проекта и до 240 кг/год на последующей. Подробностей о способе организации процесса не сообщается.

Что касается потребностей в изотопах углерода, то наибольшее развитие их применение в последние 10-15 лет получило в области медицины и биологии. В значительной мере этому способствовали государственные исследовательские программы, предпринятые в ряде крупных лабораторий и институтов США, а в настоящее время и в Германии, Англии, Корее, Японии. Эти программы предусматривают обеспечение обогащенными изотопами по приемлемым ценам, синтез разнообразных меченых соединений, разработку чувствительных методов анализа изотопов, организацию биомедицинских исследований.

Наиболее важными для современной клинической диагностики являются новые неинвазивные методы, предполагающие минимальное воздействие на человеческий организм. К таким современным методам относятся изотопный тест дыхания, МРТ  -томография и ПЭТ - позитронно-эмисионная томография. Масштаб их использования подтверждается статистикой: в США проводится более 36 000 медицинских процедур в день и около 100 миллионов лабораторных тестов в год с применением вышеназванных методов диагностики.

Изотопный дыхательный тест основан на изменении скорости выделенной биохимической реакции при наличии у пациента конкретной патологии [11]. Поэтому

8

предположительный диагноз является основой для выбора соединения, используемого в тесте дыхания. В организме препарат претерпевает изменения, связанные с протеканием биохимических реакций в различных органах. В результате препарат частично, либо полностью разлагается и выводится из организма. Углерод, входящий в исходное соединение, обычно окисляется и выходит из организма через легкие в виде углекислого газа. Если изотопный состав углерода, содержащегося в препарате, отличен от природного, то в углекислом газе, входящем в состав выдыхаемого воздуха, также отмечается отклонение изотопного состава. Дыхательный тест применяется для диагностики заболеваний печени, желудочно-кишечного тракта, нарушений обмена веществ и др. [12-14].

В меньших масштабах стабильные изотопы углерода много лет успешно используются в сельском хозяйстве, экологии, геологических исследованиях пород и минералов, гидрологии, общей химии, ядерной физике, некоторых технических приложениях.

В Главе 2 «Физико-технические основы создания СО2-лазеров для селективной технологии» определены проблемы, связанные с созданием технологического импульсно-периодического (ИП) СО2-лазера, изучены и оптимизированы характеристики разработанных лазеров серии «Дятел».

Здесь же исследованы причины наблюдаемого в экспериментах ограничения средней мощности излучения ИП СО2-лазеров. Уже в первых публикациях по ИП лазерам ([15, 16]) отмечалось, что предельно достигаемые средние мощности излучения оказываются в 5-10 раз меньше теоретически возможных, рассчитанных по формуле Go=Wo-vo/bo, где Wo -максимальная энергия импульса излучения лазера при работе в режиме однократных импульсов, vo - скорость потока газа, bo - ширина разряда вдоль по потоку. Ограничение средней мощности излучения связывали с рядом газодинамических явлений, сопровождающих ИП разряд в потоке газа и создающих возмущения плотности газа в разрядном промежутке к моменту очередного импульса, что заставляло значительно снижать энерговклад во избежание дугообразования. К таким явлениям относили расширение порции нагретого разрядом газа, неэффективную смену газа в приэлектродных пограничных слоях [15], нагрев газа, поступающего в разрядную область, ударными волнами, формирующимися после импульсного вклада энергии [17,18]. Однако прямых экспериментальных исследований этих явлений проведено практически не было.

С целью выявления причин ограничения средней мощности нами были проведены комплексные количественные измерения. Исследования проводились на модельных установках с использованием методов импульсной и временной интерферометрии, которые

9

позволяли следить за изменением плотности газа во времени в любой точке разрядного промежутка и газового канала.

Установлено, что наибольшие неоднородности плотности среды, приводящие на предельных частотах повторения импульсов к контрагированию разряда, связаны с неэффективным обновлением газа в приэлектродных пограничных слоях (Рис. 1).

Плотность газа в центре канала при предельных частотах (кривая 5 на Рис. 1) становится равной невозмущенному значению, а диссипативные процессы на фронте ударной волны, формирующейся после импульсного вклада энергии и распространяющейся вверх по потоку, не приводят к существенному нагреву газа, т.е. наблюдаемое ограничение средней мощности не может быть связано с расширением нагретого в разряде газа и теплопроводностью по потоку, а также наличием ударных волн.

1,0 0,9 0,8 0,7 0,6

n/n

мм

0       1        2       3       4       5       6 7

t

t

центр разрядного промежутка

катод

Рис. 1. Профили плотности газа в разрядном промежутке поперек потока газа в моменты времени t = 0.5 (1), 1.2 (2), 3.0 (3), 3.8 (4) и 6.0 (5) мсек.

Исследован также характер воздействия на разряд периодических колебаний плотности газа, возникающих при ИП вкладе энергии. Эти колебания связаны с возбуждением собственных частот акустического резонатора, образованного газовым трактом лазера. Возбуждение стоячих волн в акустическом резонаторе в экспериментах было зарегистрировано в случае, когда отношение первой собственной частоты резонатора v1 к частоте следования импульсов f было равно целому числу. В работе построена модель и получено аналитическое решение, описывающее изменение параметров газа при ИП вкладе энергии. Модель предсказывает возбуждение стоячей волны при частотах повторения импульсов, кратных v1, причем эффективность возбуждения тем выше, чем ближе отношение v1/f к единице, что подтвердилось в эксперименте. При увеличении скорости

5

10

потока газа в контуре значения собственных частот резонатора смещаются в меньшую сторону.

В условиях нашего эксперимента амплитуда колебаний плотности газа в пучности стоячей волны была невелика, тем не менее, возможность возбуждения стоячих волн следует учитывать при разработке конструкции ИП лазеров.

При проектировании мощных ИП СО2-лазеров особое внимание было уделено разработке или оптимизации систем накачки активной среды. Так, было установлено, что при использовании эффективной электродной системы с боковой УФ предыонизацией электроды основного разряда следует располагать под небольшим углом друг к другу

1 2 3 4 5 6 7 8 9 10 11 12 . . .. . .24 


Все услуги - Московский Врач

Виды МРТ

Виды томографии

МРТ архив

Конгрессы по томографии

 
 
Реклама: