+7 (499) 519-32-50 МРТ томография   О компании   Найдите нас   
Поиск

МРТ
Записаться на МРТ
Стоимость МРТ

МРТ в Москве
ВИП МРТ
Полное МРТ сканирование тела
Где сделать МРТ комфортно

МРТ - информация для пациентов
О методе МРТ
Показания к МРТ
Направление на МРТ
Задайте вопрос

Консультации иностранных врачей
Консультации МРТ в Израиле
Врачи МРТ
Консультанты по МРТ и КТ
Стоимость консультаций

МРТ и томография главная /  Физика МРТ /  МРТ: Физика



Физика МРТ




1 2 3 4 5 6 7 8 9 10 11 12 . . . . . .24 

Для производства 30 кг изотопа 13С в год из природного сырья требуется построить крупный разделительный завод стоимостью не менее 200 млн. долларов. При концентрации

13

С в   исходном сырье 10% или 30% ситуация существенно меняется. Однако, даже в

28

наиболее благоприятном варианте строительства участка дообогащения на действующем центрифужном комбинате, затраты будут слишком велики.

Использование обогащенного по 13С сырья в комбинированных процессах «лазер + ректификация» и «лазер + химобмен» также существенно улучшает экономические параметры разделения. Проведенный сравнительный анализ двух этих процессов показал, что:

-эксплутационные затраты для методов ректификации и химобмена, в основном, обусловлены зарплатой персонала и поэтому слабо различаются, хотя для химобменного процесса они все же ниже. Если же учесть низкое исчерпывание ректификационных установок, то следует считать, что эксплутационные затраты при ректификации существенно выше, чем при химическом изотопном обмене;

-капитальные затраты, наоборот, выше для химобменного процесса, т.к. ниже производительность модульной установки и, соответственно, требуется большее количество установок для обеспечения нужной суммарной производительности;

-химобменная установка более проста в эксплуатации, т.к. процесс реализуется при комнатной температуре, в отличие от ректификационной, где рабочая температура процесса составляет 80 К;

-используемая в химобменном процессе двуокись углерода - экологически чистое вещество, в отличие от используемой в ректификационном процессе окиси углерода.

Таким образом, можно сделать вывод, что в решении задачи конечного обогащения 13С предпочтение на сегодняшний день следует отдать методу химического изотопного обмена с использованием карбаматной рабочей системы.

В Заключении приводятся выводы и основные результаты работы.

Главным итогом проделанной работы явилось создание уникального высокорентабельного промышленного предприятия по производству изотопа 13С лазерным методом.

Основные выводы и результаты, полученные в результате проведенных исследований, сводятся к следующему:

1. Изучены физико-технические аспекты работы мощных импульсно-периодических СО2-лазеров для селективной технологии. Созданы лазеры, способные безостановочно и стабильно работать на заданной частоте (длине волны) в течение долгого времени (недели).

  • Проведено комплексное изучение причин ограничения средней мощности излучения ИП СО2-лазера, наблюдавшегося в экспериментах. Установлено, что это явление

29

связано с наличием к моменту очередного импульса тока градиентов плотности газа в приэлектродных пограничных слоях.

В определенных условиях становятся существенными градиенты плотности газа, создаваемые в разрядном промежутке стоячими волнами, возбуждаемыми в газовом тракте лазера.

  • Технические решения, заложенные в конструкцию импульсно-периодических СО2-лазеров семейства «Дятел» (электродные системы, оптические резонаторы, устройства для регенерации лазерной смеси и др.) позволили достичь как высоких энергетических характеристик лазеров, так и их долговременной стабильности. Сочетание с простотой управления позволило с успехом применить разработанные лазеры в составе демонстрационных и промышленных установок для лазерного разделения изотопов углерода.

2. Проведен комплекс исследований по выбору рабочего вещества (сырья) для разделения изотопов углерода излучением СО2-лазера. Помимо высоких параметров элементарного акта разделения (выход и селективность диссоциации) в качестве критерия рассматривались доступность и стоимость сырья, возможность создания химического цикла.

  • Наибольшие значения выхода диссоциации (вплоть до единицы) из числа изученных молекул имеет молекула CF3I. Используя в процессе CF3I, можно организовать химический цикл, позволяющий оптимальным образом получать конечный продукт любого требуемого изотопного обогащения. Однако, отсутствие массового (десятки тонн) производства CF3I делает разделительный процесс на его основе экономически невыгодным.
  • Из продуктов массового производства наилучшие параметры элементарного акта разделения зарегистрированы для молекул CF2Cl2 (фреон-12) и CF2HCl (фреон-22). Преимущество фреона-22 заключаются в том, что эти параметры достигаются при значительно больших собственных давлениях газа (до 100 Торр при единицах Торр для CF2Cl2), что является существенным фактором для производительности процесса. По совокупности характеристик в качестве сырья для крупномасштабного процесса в дальнейшем был выбран фреон-22.

3. На примере молекул CF3I и CF2HCl изучены проблемы масштабирования процесса лазерного разделения изотопов углерода.

  • Установлено, что, при должным образом организованной прокачке рабочего газа через область облучения, параметры диссоциации, достигнутые в моноимпульсном режиме облучения, в основном сохраняются при облучении газа лазерным излучением с высокой средней мощностью (~ 1 кВт).

30

  • Испытаны различные конструкции фотохимических реакторов с поперечной прокачкой рабочего вещества через зону облучения - как с открытым, так и с замкнутым циклом прокачки.
  • Показано, что вторичные химические процессы в реакторе могут при определенных условиях оказывать влияние на параметры разделительного процесса.

4. Разработан рабочий проект (конструкторская, техническая, технологическая документация) лазерного разделительного Комплекса «Углерод», на основе которого

13

создано промышленное предприятие с мощностью производства не менее 30 кг изотопа С в год (в составе СО213С 30%). с концентрацией

  • Реализована схема облучения с размещением фотохимического реактора внутри резонатора лазера.
  • Разработан и реализован составной оптический резонатор, применение которого позволило обеспечить высокие плотности энергии лазерного излучения в зоне облучения (десятки Дж/см2) при низкой лучевой нагрузке на элементы резонатора (менее 1 Дж/см2), повысить коэффициент использования лазерного излучения и рабочие давления газа в реакторе.
  • Разработана и реализована газодинамическая система разделения сред лазера и реактора, позволившая сосредоточить облучаемый газ в области сильного лазерного поля (внутри реактора), исключить потерю лазерной энергии в пассивной части резонатора, существенно повысить долговечность оптических элементов.
  • Разработан и реализован фотохимический реактор с секционированным вдоль оптической оси объемом (реактор «идеального вытеснения»). Установлено, что использование в составе лазерных разделительных блоков таких реакторов позволяет поднять производительность процесса на 50%.
  • Разработано оригинальное оборудование и технология сбора и выделения целевого продукта лазерной фотохимической реакции - тетрафторэтилена - и его последующего химического передела в товарный продукт - обогащенный по изотопу 13С углекислый газ. Технология характеризуется экологической безопасностью, отсутствием вредных отходов производства.

5. Изучены и оптимизированы параметры процесса разделения в стационарном режиме облучения, с постоянными потоками питания реакторов фреоном-22 и отбора облученного газа. Разработаны нормы технологического режима для получения тетрафторэтилена с концентрацией 13С 30% и 50%. Разработаны нормы технологического режима для участков выделения и конверсии тетрафторэтилена.

31

6. Экспериментально исследованы различные способы получения изотопа 13С с концентрацией 99% лазерными методами при размещении фотохимического реактора внутри резонатора лазера и большой средней мощности лазерного излучения. Показана принципиальная возможность получения такой концентрации 13С в результате лазерного двухступенчатого процесса.

  • Измерены параметры диссоциации молекул CF2HCl с природным содержанием 13С

13

в присутствии иодистого водорода. Концентрация С в продукте диссоциации составило 98±1.5%. Обнаружено влияние накапливающихся в фотореакторе продуктов диссоциации на параметры процесса разделения.

  • Доказана принципиальная возможность реализации лазерного двухступенчатого процесса высокого обогащения при диссоциации фреона-22, синтезированного из тетрафторэтилена, полученного на первой стадии обогащения (начальное содержание 13С в

CF2HCl - 33%).

7. Проведен сравнительный анализ комбинированных методов (совмещающих лазерный и классический методы) высокого обогащения 13С

1 2 3 4 5 6 7 8 9 10 11 12 . . .. . .24 


Все услуги - Московский Врач

Виды МРТ

Виды томографии

МРТ архив

Конгрессы по томографии

 
 
Реклама: